
pycloudlib Documentation

Joshua Powers

Sep 13, 2023





Clouds

1 Documentation 3

2 Install 5

3 Usage 7

4 Bugs 9

5 Contact 11
5.1 Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 GCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 LXD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 OCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.7 Openstack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.8 VMWare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.9 EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.10 GCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.11 IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.12 LXD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.13 OCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.14 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.15 SSH Key Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.16 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.17 Resource Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.18 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.19 Maintainer Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.20 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.21 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



ii



pycloudlib Documentation

Python library to launch, interact, and snapshot cloud instances

Clouds 1



pycloudlib Documentation

2 Clouds



CHAPTER 1

Documentation

Use the links in the table of contents to find:

• Cloud specific guides and documentation

• API documentation

• How to contribute to the project

3



pycloudlib Documentation

4 Chapter 1. Documentation



CHAPTER 2

Install

Install directly from PyPI:

pip3 install pycloudlib

Project’s requirements.txt file can include pycloudlib as a dependency. Check out the pip documentation for instruc-
tions on how to include a particular version or git hash.

Install from latest master:

git clone https://git.launchpad.net/pycloudlib
cd pycloudlib
python3 setup.py install

5

https://pypi.org/project/pycloudlib/
https://pip.readthedocs.io/en/1.1/requirements.html


pycloudlib Documentation

6 Chapter 2. Install



CHAPTER 3

Usage

The library exports each cloud with a standard set of functions for operating on instances, snapshots, and images.
There are also cloud specific operations that allow additional operations.

See the examples directory or the online documentation for more information.

7

https://pycloudlib.readthedocs.io/


pycloudlib Documentation

8 Chapter 3. Usage



CHAPTER 4

Bugs

File bugs on Launchpad under the pycloudlib project.

9

https://bugs.launchpad.net/pycloudlib/+filebug


pycloudlib Documentation

10 Chapter 4. Bugs



CHAPTER 5

Contact

If you come up with any questions or are looking to contact developers please use the pycloudlib-
devs@lists.launchpad.net list.

5.1 Azure

The following page documents the Azure cloud integration in pycloudlib.

5.1.1 Credentials

To access Azure requires users to have four different keys:

• client id

• client secret id

• tenant id

• subscription id

These should be set in pycloudlib.toml.

Passed Directly (Deprecated)

All of these four credentials can also be provided directly when initializing the Azure object:

azure = pycloudlib.Azure(
client_id='ID_VALUE',
client_secret_id='ID_VALUE',
tenant_id='ID_VALUE',
subscription_id='ID_VALUE',

)

11

mailto:pycloudlib-devs@lists.launchpad.net
mailto:pycloudlib-devs@lists.launchpad.net


pycloudlib Documentation

This way we can create different Azure instances with different configurations.

5.1.2 SSH Keys

Azure requires an SSH key to be uploaded before using it. See the SSH Key page for more details.

5.1.3 Image Lookup

To find latest daily Azure image for a release of Ubuntu:

azure.daily_image('xenial')
"Canonical:UbuntuServer:16.04-DAILY-LTS:latest"

The return Azure image can then be used for launching instances.

5.1.4 Instances

Launching an instance requires at a minimum an Azure image.

inst_0 = azure.launch('Canonical:UbuntuServer:14.04.0-LTS:latest')
inst_1 = azure.launch('Canonical:UbuntuServer:18.04-DAILY-LTS:latest')

If further customization of an instance is required, a user can pass additional arguments to the launch command and
have them passed on.

inst = azure.launch(
image_id='Canonical:UbuntuServer:14.04.0-LTS:latest',
user_data='#cloud-config\nfinal_message: "system up!"',

)

By default, the launch method will wait for cloud-init to finish initializing before completing. When launching multiple
instances a user may not wish to wait for each instance to come up by passing the wait=False option.

instances = []
for inst in range(num_instances):

instances.append(
azure.launch('Canonical:UbuntuServer:18.04-DAILY-LTS:latest', wait=False))

for instance in instances:
instance.wait()

Similarly, when deleting an instance, the default action will wait for the instance to complete termination. Otherwise,
the wait=False option can be used to start the termination of a number of instances:

inst.delete()

for instance in instances:
instance.delete(wait=False)

An existing instance can get used by providing an instance-id.

instance = azure.get_instance('my-azure-vm')

12 Chapter 5. Contact



pycloudlib Documentation

5.1.5 Snapshots

A snapshot of an instance is used to generate a new backing Azure image. The generated image can in turn get used
to launch new instances. This allows for customization of an image and then re-use of that image.

inst = azure.launch('Canonical:UbuntuServer:14.04.0-LTS:latest')
inst.execute('touch /etc/foobar')
image_id_snapshot = azure.snapshot(inst)
inst_prime = azure.launch(image_id_snapshot)

The snapshot function returns a string of the created AMI ID.

To delete the image when the snapshot is no longer required:

azure.image_delete(image_id_snapshot)

5.2 EC2

The following page documents the AWS EC2 cloud integration in pycloudlib.

5.2.1 Credentials

To access EC2 requires users to have an access key id and secret access key. These should be set in pycloudlib.toml.

AWS Dotfile (Deprecated)

The AWS CLI, Python library boto3, and other AWS tools maintain credentials and configuration settings in a local
dotfile found under the aws dotfile directory (i.e. /home/$USER/.aws/). If these files exist they will be used to
provide login and region information.

These configuration files are normally generated when running aws configure:

$ cat /home/$USER/.aws/credentials
[default]
aws_access_key_id = <KEY_VALUE>
aws_secret_access_key = <KEY_VALUE>
$ cat /home/$USER/.aws/config
[default]
output = json
region = us-west-2

Passed Directly (Deprecated)

The credential and region information can also be provided directly when initializing the EC2 object:

ec2 = pycloudlib.EC2(
access_key_id='KEY_VALUE',
secret_access_key='KEY_VALUE',
region='us-west-2'

)

This way different credentials or regions can be used by different objects allowing for interactions with multiple
regions at the same time.

5.2. EC2 13



pycloudlib Documentation

5.2.2 SSH Keys

EC2 requires an SSH key to be uploaded before using it. See the SSH Key page for more details.

5.2.3 Image Lookup

To find latest daily AMI ID for a release of Ubuntu:

ec2.daily_image('xenial')
'ami-537e9a30'

The return AMI ID can then be used for launching instances.

5.2.4 Instances

Launching an instance requires at a minimum an AMI ID. Optionally, a user can specify an instance type or a Virtual
Private Cloud (VPC):

inst_0 = ec2.launch('ami-537e9a30')
inst_1 = ec2.launch('ami-537e9a30', instance_type='i3.metal', user_data=data)
vpc = ec2.get_or_create_vpc('private_vpc')
inst_2 = ec2.launch('ami-537e9a30', vpc=vpc)

If no VPC is specified the region’s default VPC, including security group is used. See the Virtual Private Cloud (VPC)
section below for more details on creating a custom VPC.

If further customization of an instance is required, a user can pass additional arguments to the launch command and
have them passed on.

inst = ec2.launch(
'ami-537e9a30',
UserData='#cloud-config\nfinal_message: "system up!"',
Placement={

'AvailabilityZone': 'us-west-2a'
},
SecurityGroupsIds=[

'sg-1e838479',
'sg-e6ef7d80'

]
)

By default, the launch method will wait for cloud-init to finish initializing before completing. When launching multiple
instances a user may not wish to wait for each instance to come up by passing the wait=False option.

instances = []
for inst in range(num_instances):

instances.append(ec2.launch('ami-537e9a30', wait=False))

for instance in instances:
instance.wait()

Similarly, when deleting an instance, the default action will wait for the instance to complete termination. Otherwise,
the wait=False option can be used to start the termination of a number of instances:

14 Chapter 5. Contact



pycloudlib Documentation

inst.delete()

for instance in instances:
instance.delete(wait=False)

for instance in instances:
instance.wait_for_delete()

An existing instance can get used by providing an instance-id.

instance = ec2.get_instance('i-025795d8e55b055da')

5.2.5 Snapshots

A snapshot of an instance is used to generate a new backing AMI image. The generated image can in turn get used to
launch new instances. This allows for customization of an image and then re-use of that image.

inst = ec2.launch('ami-537e9a30')
inst.update()
inst.execute('touch /etc/foobar')
snapshot = ec2.snapshot(instance.id)
inst_prime = ec2.launch(snapshot)

The snapshot function returns a string of the created AMI ID.

To delete the image when the snapshot is no longer required:

ec2.image_delete(snapshot)

5.2.6 Unique Operations

The following are unique operations to the EC2 cloud.

Virtual Private Clouds

If a custom VPC is required for any reason, then one can be created and then later used during instance creation.

vpc = ec2.get_or_create_vpc(name, ipv4_cidr='192.168.1.0/20')
ec2.launch('ami-537e9a30', vpc=vpc)

If the VPC is destroyed, all instances will be deleted as well.

vpc.delete()

Hot Add Storage Volumes

An instance is capable of getting additional storage hot added to it:

inst.add_volume(size=8, drive_type='gp2')

5.2. EC2 15



pycloudlib Documentation

Volumes are attempted to be added at the next available location from /dev/sd[f-z]. However, NVMe devices
will still be placed under /dev/nvme#.

Additional storage devices that were added will be deleted when the instance is removed.

Hot Add Network Devices

It is possible to hot add network devices to an instance.

inst.add_network_interface()

The instance will take the next available index. It is up to the user to configure the network devices once added.

Additional network devices that were added will be deleted when the instance is removed.

5.3 GCE

The following page documents the Google Cloud Engine (GCE) integration in pycloudlib.

5.3.1 Credentials

Service Account

The preferred method of connecting to GCE is to use service account credentials. See the GCE Authentication Getting
Started page for more information on creating one.

Once a service account is created, generate a key file and download it to your system. Specify the credential file in
pycloudlib.toml.

Export the Credentials File (deprecated)

Export the credential file as a shell variable and the Google API will automatically read the environmental variable
and discover the credentials:

export GOOGLE_APPLICATION_CREDENTIALS="[path to keyfile.json]"

End User (Deprecated)

A secondary method of GCE access is to use end user credentials directly. This is not the recommended method and
Google will warn the user and suggest using a service account instead.

If you do wish to continue using end user credentials, then the first step is to install the Google’s Cloud SDK. On
Ubuntu, this can be installed quickly as a snap with the following:

sudo snap install google-cloud-sdk --classic

Next, is to authorize the system by getting a token. This command will launch a web-browser, have you login to you
Google account, and accept any agreements:

gcloud auth application-default login

16 Chapter 5. Contact

https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/sdk/


pycloudlib Documentation

The Google API will automatically check first for the above environmental variable for a service account credential
and fallback to this gcloud login as a secondary option.

5.3.2 SSH Keys

GCE does not require any special key configuration. See the SSH Key page for more details.

5.3.3 Image Lookup

To find latest daily image for a release of Ubuntu:

gce.daily_image('bionic')
'ubuntu-1804-bionic-v20180823'

The return ID can then be used for launching instances.

5.3.4 Instances

The only supported function at this time is launching an instance. No other actions, including deleting the instance are
supported.

5.4 IBM

The following page documents the IBM VPC cloud integration in pycloudlib.

5.4.1 Credentials

To operate on IBM VPC an IBM Cloud API key is required. This should be set in pycloudlib.toml or passed to
pycloudlib.IBM at initialization time.

5.4.2 SSH Keys

IBM VPC requires an SSH key to be uploaded before using it. See the SSH Key page for more details.

5.4.3 Image Lookup

Note: IBM does not contain daily Ubuntu images.

To find latest released image ID for a release of Ubuntu:

ibm.released_image('xenial')
'r010-7334d328-7a1f-47d4-8dda-013e857a1f2b'

The return image ID can then be used for launching instances.

5.4. IBM 17



pycloudlib Documentation

5.4.4 Instances

Launching an instance requires at a minimum an image ID. Optionally, a user can specify an instance type or a Virtual
Private Cloud (VPC):

inst_0 = ibm.launch('r010-7334d328-7a1f-47d4-8dda-013e857a1f2b')
inst_1 = ibm.launch('r010-7334d328-7a1f-47d4-8dda-013e857a1f2b', instance_type='bx2-
→˓metal-96x384', user_data=data)
vpc = ibm.get_or_create_vpc('custom_vpc')
inst_2 = ibm.launch('r010-7334d328-7a1f-47d4-8dda-013e857a1f2b', vpc=vpc)

If no VPC is specified the region’s default VPC, including security group is used. See the Virtual Private Cloud (VPC)
section below for more details on creating a custom VPC.

If further customization of an instance is required, a user can pass additional arguments to the launch command and
have them passed on.

inst = ibm.launch(
'r010-7334d328-7a1f-47d4-8dda-013e857a1f2b',

**kwargs,
)

By default, the launch method will wait for cloud-init to finish initializing before completing. When launching multiple
instances a user may not wish to wait for each instance to come up by passing the wait=False option.

instances = []
for inst in range(num_instances):

instances.append(ibm.launch('r010-7334d328-7a1f-47d4-8dda-013e857a1f2b',
→˓wait=False))

for instance in instances:
instance.wait()

Similarly, when deleting an instance, the default action will wait for the instance to complete termination. Otherwise,
the wait=False option can be used to start the termination of a number of instances:

inst.delete()

for instance in instances:
instance.delete(wait=False)

for instance in instances:
instance.wait_for_delete()

An existing instance can get used by providing an instance-id.

instance = ibm.get_instance('i-025795d8e55b055da')

5.4.5 Snapshots

A snapshot of an instance is used to generate a new backing Custom Image. The generated image can in turn get used
to launch new instances. This allows for customization of an image and then re-use of that image.

inst = ibm.launch('r010-7334d328-7a1f-47d4-8dda-013e857a1f2b')
inst.update()
inst.execute('touch /etc/foobar')

(continues on next page)

18 Chapter 5. Contact



pycloudlib Documentation

(continued from previous page)

snapshot = ibm.snapshot(instance.id)
inst_prime = ibm.launch(snapshot)

The snapshot function returns a string of the created Custom Image ID.

To delete the image when the snapshot is no longer required:

ibm.image_delete(snapshot)

5.4.6 Unique Operations

The following are unique operations to the IBM cloud.

Virtual Private Clouds

A pre-existent VPC can be set in the config file or be passed as argument to the cloud.IBM constructor. If not set,
pycloudlib will default to {region}-default-vpc.

ibm = IBM(vpc="my-custom-vpc", ...)

Another possibility is to create a custom VPC on the fly, then one can be created and then later used during instance
creation.

vpc = ibm.get_or_create_vpc(name)
ibm.launch('r010-7334d328-7a1f-47d4-8dda-013e857a1f2b', vpc=vpc)

If the VPC is destroyed, all instances and subnets will be deleted as well.

vpc.delete()

5.5 LXD

The following page documents the LXD cloud integration in pycloudlib.

5.5.1 Launching Instances

Launching instances with LXD only requires an instance name and a release name by default.

lxd.launch('my-instance', 'bionic')

Instances can be initialized or launched. The difference is initializing involves getting the required image and setting
up the instance, but not starting it. The following is the same as the above command.

inst = lxd.init('my-instance', 'bionic')
inst.start()

5.5. LXD 19



pycloudlib Documentation

Launch Options

Instances can take a large number of settings and options. Consult the API for a full list, however here are a few
examples showing different image remotes, ephemeral instance creation, and custom settings.

lxd.launch(
'pycloudlib-ephemeral', 'bionic', image_remote='ubuntu', ephemeral=True

)

lxd.launch(
'pycloudlib-custom-hw', 'ubuntu/xenial', image_remote='images',
network='lxdbr0', storage='default', inst_type='t2.micro', wait=False

)

5.5.2 Snapshots

Snapshots allow for saving and reverting to a particular point in time.

instance.snapshot(snapshot_name)
instance.restore(snapshot_name)

Snapshots can at as a base for creating new instances at a pre-configured state. See the cloning section below.

5.5.3 Cloning

Cloning instances allows for copying an existing instance or snapshot of an instance to a new container. This is useful
when wanting to setup a instance with a particular state and then re-use that state over and over to avoid needing to
repeat the steps to get to the initial state.

lxd.launch_snapshot('instance', new_instance_name)
lxd.launch_snapshot('instance\snapshot', new_instance_name)

5.5.4 Unique Operations

Enable KVM

Enabling KVM to work properly inside a container requires passing the /dev/kvm device to the container. This can
be done by creating a profile and then using that profile when launching instances.

lxc profile create kvm

Add the /dev/kvm device to the profile.

devices:
kvm:
path: /dev/kvm
type: unix-char

Then launch the instance using the default and the KVM profiles.

lxd.launch(
'pycloudlib-kvm', RELEASE, profile_list=['default', 'kvm']

)

20 Chapter 5. Contact



pycloudlib Documentation

Nested instances

To enable nested instances of LXD containers requires making the container a privileged containers. This can be
achieved by setting the appropriate configuration options.

lxd.launch(
'pycloudlib-privileged',
'bionic,
config_dict={

'security.nesting': 'true',
'security.privileged': 'true'

}
)

5.6 OCI

5.6.1 Credentials

Easy way

Run:

$ pip install oci-cli
$ oci setup config

When prompted:

location for your config: use default
user OCID: enter your user id found on the Oracle console at Identity>>Users>>User
→˓Details
tenancy OCID: enter your tenancy id found on the Oracle cnosole at Administration>>
→˓Tenancy Details
region: Choose something sensible
API Signing RSA key pair: use defaults for all prompts

* Note this ISN'T an SSH key pair
Follow instructions in your terminal for uploading your generated key

Now specify your config_path in pycloudlib.toml.

Hard way

Construct your config file manually by filling in the appropriate entries documented here:
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Compartment id

In addition to the OCI config, pycloudlib.toml also requires you provide the compartment id. This can be found in the
OCI console from the menu at Identity>Compartments>

5.6.2 SSH Keys

OCI does not require any special key configuration. See the SSH Key page for more details

5.6. OCI 21



pycloudlib Documentation

5.6.3 Image Lookup

OCI doesn’t have a concept of releases vs daily images, so both API calls refer to the same thing. To get the list for a
release of Ubuntu:

oci.released_image('focal')
'ocid1.compartment.oc1..aaaaaaaanz4b63fdemmuag77dg2pi22xfyhrpq46hcgdd3dozkvqfzwwjwxa'

The returned image id can then be used for launching instances.

5.6.4 Instances

Launching instances requires at minimum an image_id, though instance_type (shape in Oracle terms) can also be
specified, in addition to the other parameters specified by the base API.

5.6.5 Snapshots

A snapshot of an instance is used to generate a new backing image. The generated image can in turn get used to launch
new instances. This allows for customization of an image and then re-use of that image.

inst = oci.launch(image_id)
inst.execute('touch /etc/foobar')
snapshot = oci.snapshot(instance.id)
inst_prime = oci.launch(snapshot)

5.7 Openstack

5.7.1 Credentials

No connection information is directly passed to pycloudlib but rather relies on clouds.yaml or OS_ environment
variables. See the openstack configuration docs for more information.

5.7.2 SSH Keys

Openstack can’t launch instances unless an openstack managed keypair already exists. Since pycloudlib also manages
keys, pycloudlib will attempt to use or create an openstack ssh keypair based on the pycloudlib keypair. If a key is
provided to pycloudlib with the same name and public key that already exists in openstack, that key will be used. If
no key information is provided, an openstack keypair will be created with the current user’s username and public key.

5.7.3 Image ID

The image id to use for a launch must be manually passed to pycloudlib rather than determined from release name.
Given that each openstack deployment can have a different setup of images, it’s not practical given the information we
have to guess which image to use for any particular launch.

22 Chapter 5. Contact

https://docs.openstack.org/python-openstackclient/victoria/configuration/index.html


pycloudlib Documentation

5.7.4 Network ID

Network ID must be specified in pycloudlib.toml. Since there can be multiple networks and no concept of a default
network, we can’t choose which network to create an instance on.

5.7.5 Floating IPs

A floating IP is allocated and used per instance created. The IP is then deleted when the instance is deleted.

5.8 VMWare

The VMWare support in pycloudlib is specific to vSphere. In particular, vSphere 7 was tested.

5.8.1 Prerequisites

VMWare usage in Pycloudlib requires the govc command line tool to be available on the PATH. See VMWare docs
for installation information.

5.8.2 Available Images

To create new instances, pycloudlib will clone an existing VM within vSphere that is designated as the image source.
In order to qualify, the VM must meet the following requirements:

• A standard (non-template) VM.

• Powered off

• In the same folder that new VMs will be deployed to (see folder in pycloudlib.toml)

• Have the “InjectOvfEnv” setting be false.

• Be named appropriately: TEMPLATE-cloud-init-<release>

As of this writing, TEMPLATE-cloud-init-focal and TEMPLATE-cloud-init-jammy are valid source
VMs.

To create the Ubuntu-based source images, the following procedure was followed for a Jammy image:

• Download the .ova for the release from the release server

• govc import.spec ubuntu-jammy-server-cloudimg-amd64.ova | python -m json.
tool > ubuntu.json

• Modify the json file appropriately

• govc import.ova -options=ubuntu.json ./ubuntu-jammy-server-cloudimg-amd64.
ova

Example ubuntu.json:

{
"DiskProvisioning": "thin",
"IPAllocationPolicy": "dhcpPolicy",
"IPProtocol": "IPv4",
"PropertyMapping": [

(continues on next page)

5.8. VMWare 23

https://github.com/vmware/govmomi/tree/main/govc
https://docs.vmware.com/en/VMware-Telco-Cloud-Operations/1.4.0/deployment-guide-140/GUID-5249E662-D792-4A1A-93E6-CF331552364C.html
https://cloud-images.ubuntu.com/releases/server/jammy/release/


pycloudlib Documentation

(continued from previous page)

{
"Key": "instance-id",
"Value": ""

},
{

"Key": "hostname",
"Value": ""

},
{

"Key": "seedfrom",
"Value": ""

},
{

"Key": "public-keys",
"Value": ""

},
{

"Key": "user-data",
"Value": ""

},
{

"Key": "password",
"Value": ""

}
],
"NetworkMapping": [

{
"Name": "VM Network",
"Network": "VLAN_2763"

}
],
"MarkAsTemplate": false,
"PowerOn": false,
"InjectOvfEnv": false,
"WaitForIP": false,
"Name": "TEMPLATE-cloud-init-jammy"

}

5.8.3 SSH Keys

To avoid cloud-init detecting an instance as an OVF datasource, passing a public key through ovf xml is not supported.
Rather, when the instance is created, the pycloudlib managed ssh public key is added to the cloud-config user data of
the instance. This means that the user data on the launched instance will always contain an extra public key compared
to what was passed to pycloudlib.

5.8.4 Blocking calls

Since calls to govc are blocking, specifying wait=False to enable non-blocking calls will not work.

24 Chapter 5. Contact



pycloudlib Documentation

5.9 EC2

1 #!/usr/bin/env python3
2 # This file is part of pycloudlib. See LICENSE file for license information.
3 """Basic examples of various lifecycle with an EC2 instance."""
4

5 import logging
6 import os
7

8 import pycloudlib
9 from pycloudlib.cloud import ImageType

10

11

12 def hot_add(ec2, daily):
13 """Hot add to an instance.
14

15 Give an example of hot adding a pair of network interfaces and a
16 couple storage volumes of various sizes.
17 """
18 with ec2.launch(daily, instance_type="m4.xlarge") as instance:
19 instance.wait()
20 instance.add_network_interface()
21 instance.add_network_interface()
22

23 instance.add_volume(size=9)
24 instance.add_volume(size=10, drive_type="gp2")
25

26

27 def launch_multiple(ec2, daily):
28 """Launch multiple instances.
29

30 How to quickly launch multiple instances with EC2. This prevents
31 waiting for the instance to start each time.
32 """
33 instances = []
34 for _ in range(3):
35 instances.append(ec2.launch(daily))
36

37 for instance in instances:
38 instance.wait()
39

40 for instance in instances:
41 instance.delete(wait=False)
42

43 for instance in instances:
44 instance.wait_for_delete()
45

46

47 def snapshot(ec2, daily):
48 """Create a snapshot from a customized image and launch it."""
49 with ec2.launch(daily) as instance:
50 instance.wait()
51 instance.execute("touch custom_config_file")
52

53 image = ec2.snapshot(instance)
54 new_instance = ec2.launch(image)
55 new_instance.wait()

(continues on next page)

5.9. EC2 25



pycloudlib Documentation

(continued from previous page)

56 new_instance.execute("ls")
57

58 new_instance.delete()
59 ec2.delete_image(image)
60

61

62 def custom_vpc(ec2, daily):
63 """Launch instances using a custom VPC."""
64 vpc = ec2.get_or_create_vpc(name="test-vpc")
65 with ec2.launch(daily, vpc=vpc) as instance:
66 instance.wait()
67 instance.execute("whoami")
68

69 # vpc.delete will also delete any associated instances in that VPC
70 vpc.delete()
71

72

73 def launch_basic(ec2, daily):
74 """Show basic functionality on instances.
75

76 Simple launching of an instance, run a command, and delete.
77 """
78 with ec2.launch(daily) as instance:
79 instance.wait()
80 instance.console_log()
81 print(instance.execute("lsb_release -a"))
82

83 instance.shutdown()
84 instance.start()
85 instance.restart()
86

87 # Various Attributes
88 print(instance.ip)
89 print(instance.id)
90 print(instance.image_id)
91 print(instance.availability_zone)
92

93

94 def launch_pro(ec2, daily):
95 """Show basic functionality on PRO instances."""
96 print("Launching Pro instance...")
97 with ec2.launch(daily) as instance:
98 instance.wait()
99 print(instance.execute("sudo ua status --wait"))

100 print("Deleting Pro instance...")
101

102

103 def launch_pro_fips(ec2, daily):
104 """Show basic functionality on PRO instances."""
105 print("Launching Pro FIPS instance...")
106 with ec2.launch(daily) as instance:
107 instance.wait()
108 print(instance.execute("sudo ua status --wait"))
109 print("Deleting Pro FIPS instance...")
110

111

112 def handle_ssh_key(ec2, key_name):
(continues on next page)

26 Chapter 5. Contact



pycloudlib Documentation

(continued from previous page)

113 """Manage ssh keys to be used in the instances."""
114 if key_name in ec2.list_keys():
115 ec2.delete_key(key_name)
116

117 key_pair = ec2.client.create_key_pair(KeyName=key_name)
118 private_key_path = "ec2-test.pem"
119 with open(private_key_path, "w", encoding="utf-8") as stream:
120 stream.write(key_pair["KeyMaterial"])
121 os.chmod(private_key_path, 0o600)
122

123 # Since we are using a pem file, we don't have distinct public and
124 # private key paths
125 ec2.use_key(
126 public_key_path=private_key_path,
127 private_key_path=private_key_path,
128 name=key_name,
129 )
130

131

132 def demo():
133 """Show example of using the EC2 library.
134

135 Connects to EC2 and finds the latest daily image. Then runs
136 through a number of examples.
137 """
138 with pycloudlib.EC2(tag="examples") as ec2:
139 key_name = "test-ec2"
140 handle_ssh_key(ec2, key_name)
141

142 daily = ec2.daily_image(release="bionic")
143 daily_pro = ec2.daily_image(release="bionic", image_type=ImageType.PRO)
144 daily_pro_fips = ec2.daily_image(
145 release="bionic", image_type=ImageType.PRO_FIPS
146 )
147

148 launch_basic(ec2, daily)
149 launch_pro(ec2, daily_pro)
150 launch_pro_fips(ec2, daily_pro_fips)
151 custom_vpc(ec2, daily)
152 snapshot(ec2, daily)
153 launch_multiple(ec2, daily)
154 hot_add(ec2, daily)
155

156

157 if __name__ == "__main__":
158 logging.basicConfig(level=logging.DEBUG)
159 demo()

5.10 GCE

1 #!/usr/bin/env python3
2 # This file is part of pycloudlib. See LICENSE file for license information.
3 """Basic examples of various lifecycle with an GCE instance."""
4

(continues on next page)

5.10. GCE 27



pycloudlib Documentation

(continued from previous page)

5 import logging
6 import os
7

8 import pycloudlib
9 from pycloudlib.cloud import ImageType

10

11

12 def manage_ssh_key(gce):
13 """Manage ssh keys for gce instances."""
14 pub_key_path = "gce-pubkey"
15 priv_key_path = "gce-privkey"
16 pub_key, priv_key = gce.create_key_pair()
17

18 with open(pub_key_path, "w", encoding="utf-8") as f:
19 f.write(pub_key)
20

21 with open(priv_key_path, "w", encoding="utf-8") as f:
22 f.write(priv_key)
23

24 os.chmod(pub_key_path, 0o600)
25 os.chmod(priv_key_path, 0o600)
26

27 gce.use_key(public_key_path=pub_key_path, private_key_path=priv_key_path)
28

29

30 def generic(gce):
31 """Show example of using the GCE library.
32

33 Connects to GCE and finds the latest daily image. Then runs
34 through a number of examples.
35 """
36 daily = gce.daily_image("bionic", arch="x86_64")
37 with gce.launch(daily) as inst:
38 inst.wait()
39 print(inst.execute("lsb_release -a"))
40

41

42 def pro(gce):
43 """Show example of running a GCE PRO machine."""
44 daily = gce.daily_image("bionic", image_type=ImageType.PRO)
45 with gce.launch(daily) as inst:
46 inst.wait()
47 print(inst.execute("sudo ua status --wait"))
48

49

50 def pro_fips(gce):
51 """Show example of running a GCE PRO FIPS machine."""
52 daily = gce.daily_image("bionic", image_type=ImageType.PRO_FIPS)
53 with gce.launch(daily) as inst:
54 inst.wait()
55 print(inst.execute("sudo ua status --wait"))
56

57

58 def demo():
59 """Show examples of launching GCP instances."""
60 logging.basicConfig(level=logging.DEBUG)
61 with pycloudlib.GCE(tag="examples") as gce:

(continues on next page)

28 Chapter 5. Contact



pycloudlib Documentation

(continued from previous page)

62 manage_ssh_key(gce)
63

64 generic(gce)
65 pro(gce)
66 pro_fips(gce)
67

68

69 if __name__ == "__main__":
70 demo()

5.11 IBM

1 #!/usr/bin/env python3
2 # This file is part of pycloudlib. See LICENSE file for license information.
3 """Basic examples of various lifecycle with an IBM instance."""
4

5 import logging
6 import os
7

8 import pycloudlib
9

10

11 def snapshot(ibm, daily):
12 """Create a snapshot from a customized image and launch it."""
13 with ibm.launch(daily) as instance:
14 instance.wait()
15 instance.execute("touch custom_config_file")
16

17 image = ibm.snapshot(instance)
18 with ibm.launch(image, name="example-snapshot") as new_instance:
19 new_instance.execute("ls")
20

21 ibm.delete_image(image)
22

23

24 def custom_vpc(ibm, daily):
25 """Launch instances using a custom VPC."""
26 vpc = ibm.get_or_create_vpc(name="test-vpc")
27 with ibm.launch(daily, vpc=vpc) as instance:
28 instance.wait()
29 instance.execute("whoami")
30

31 # vpc.delete will also delete any associated instances in that VPC
32 vpc.delete()
33

34

35 def launch_basic(ibm, daily, instance_type):
36 """Show basic functionality on instances.
37

38 Simple launching of an instance, run a command, and delete.
39 """
40 with ibm.launch(daily, instance_type=instance_type) as instance:
41 instance.wait()
42 print(instance.execute("lsb_release -a"))

(continues on next page)

5.11. IBM 29



pycloudlib Documentation

(continued from previous page)

43

44 instance.shutdown()
45 instance.start()
46 instance.restart()
47

48 # Various Attributes
49 print(instance.ip)
50 print(instance.id)
51

52

53 def manage_ssh_key(ibm, key_name):
54 """Manage ssh keys for ibm instances."""
55 if key_name in ibm.list_keys():
56 ibm.delete_key(key_name)
57

58 pub_key_path = "ibm-pubkey"
59 priv_key_path = "ibm-privkey"
60 pub_key, priv_key = ibm.create_key_pair()
61

62 with open(pub_key_path, "w", encoding="utf-8") as f:
63 f.write(pub_key)
64

65 with open(priv_key_path, "w", encoding="utf-8") as f:
66 f.write(priv_key)
67

68 os.chmod(pub_key_path, 0o600)
69 os.chmod(priv_key_path, 0o600)
70

71 ibm.use_key(
72 public_key_path=pub_key_path,
73 private_key_path=priv_key_path,
74 name=key_name,
75 )
76

77

78 def demo():
79 """Show example of using the IBM library.
80

81 Connects to IBM and finds the latest daily image. Then runs
82 through a number of examples.
83 """
84 with pycloudlib.IBM(tag="examples") as ibm:
85 manage_ssh_key(ibm, "test-ibm")
86

87 daily = ibm.daily_image(release="bionic")
88

89 # "bx2-metal-96x384" for a bare-metal instance
90 launch_basic(ibm, daily, "bx2-2x8")
91 custom_vpc(ibm, daily)
92 snapshot(ibm, daily)
93

94

95 if __name__ == "__main__":
96 logging.basicConfig(level=logging.DEBUG)
97 demo()

30 Chapter 5. Contact



pycloudlib Documentation

5.12 LXD

1 #!/usr/bin/env python3
2 # This file is part of pycloudlib. See LICENSE file for license information.
3 """Basic examples of various lifecycle with a LXD instance."""
4 import logging
5 import textwrap
6

7 import pycloudlib
8

9 RELEASE = "bionic"
10

11

12 def snapshot_instance():
13 """Demonstrate snapshot functionality.
14

15 This shows the lifecycle of booting an instance and cleaning it
16 before creating a snapshot.
17

18 Next, both create the snapshot and immediately restore the original
19 instance to the snapshot level.
20 Finally, launch another instance from the snapshot of the instance.
21 """
22 with pycloudlib.LXDContainer("example-snapshot") as lxd:
23 with lxd.launch(
24 name="pycloudlib-snapshot-base", image_id=RELEASE
25 ) as inst:
26 inst.wait()
27 snapshot_name = "snapshot"
28 inst.local_snapshot(snapshot_name)
29 inst.restore(snapshot_name)
30

31 child = lxd.clone(
32 "%s/%s" % (inst.name, snapshot_name),
33 "pycloudlib-snapshot-child",
34 )
35

36 child.delete()
37 inst.delete_snapshot(snapshot_name)
38 inst.delete(wait=False)
39

40

41 def image_snapshot_instance(ephemeral_instance=False):
42 """Demonstrate image snapshot functionality.
43

44 Create an snapshot image from a running instance an show
45 how to launch a new instance based of this image snapshot
46 """
47 with pycloudlib.LXDContainer("example-image-snapshot") as lxd:
48 with lxd.launch(
49 name="pycloudlib-snapshot-base",
50 image_id=RELEASE,
51 ephemeral=ephemeral_instance,
52 ) as inst:
53 inst.wait()
54 inst.execute("touch snapshot-test.txt")
55 print("Base instance output: {}".format(inst.execute("ls")))

(continues on next page)

5.12. LXD 31



pycloudlib Documentation

(continued from previous page)

56 snapshot_image = lxd.snapshot(instance=inst)
57

58 with lxd.launch(
59 name="pycloudlib-snapshot-image",
60 image_id=snapshot_image,
61 ephemeral=ephemeral_instance,
62 ) as snapshot_inst:
63 print(
64 "Snapshot instance output: {}".format(
65 snapshot_inst.execute("ls")
66 )
67 )
68

69

70 def modify_instance():
71 """Demonstrate how to modify and interact with an instance.
72

73 The inits an instance and before starting it, edits the the
74 container configuration.
75

76 Once started the instance demonstrates some interactions with the
77 instance.
78 """
79 with pycloudlib.LXDContainer("example-modify") as lxd:
80 with lxd.init("pycloudlib-modify-inst", RELEASE) as inst:
81 inst.edit("limits.memory", "3GB")
82 inst.start()
83

84 inst.execute("uptime > /tmp/uptime")
85 inst.pull_file("/tmp/uptime", "/tmp/pulled_file")
86 inst.push_file("/tmp/pulled_file", "/tmp/uptime_2")
87 inst.execute("cat /tmp/uptime_2")
88

89

90 def launch_multiple():
91 """Launch multiple instances.
92

93 How to quickly launch multiple instances with LXD. This prevents
94 waiting for the instance to start each time. Note that the
95 wait_for_delete method is not used, as LXD does not do any waiting.
96 """
97 lxd = pycloudlib.LXDContainer("example-multiple")
98

99 instances = []
100 for num in range(3):
101 inst = lxd.launch(name="pycloudlib-%s" % num, image_id=RELEASE)
102 instances.append(inst)
103

104 for instance in instances:
105 instance.wait()
106

107 for instance in instances:
108 instance.delete()
109

110

111 def launch_options():
112 """Demonstrate various launching scenarios.

(continues on next page)

32 Chapter 5. Contact



pycloudlib Documentation

(continued from previous page)

113

114 First up is launching with a different profile, in this case with
115 two profiles.
116

117 Next, is launching an ephemeral instance with a different image
118 remote server.
119

120 Then, an instance with custom network, storage, and type settings.
121 This is an example of booting an instance without cloud-init so
122 wait is set to False.
123

124 Finally, an instance with custom configurations options.
125 """
126 lxd = pycloudlib.LXDContainer("example-launch")
127 kvm_profile = textwrap.dedent(
128 """\
129 devices:
130 kvm:
131 path: /dev/kvm
132 type: unix-char
133 """
134 )
135

136 lxd.create_profile(profile_name="kvm", profile_config=kvm_profile)
137

138 lxd.launch(
139 name="pycloudlib-kvm",
140 image_id=RELEASE,
141 profile_list=["default", "kvm"],
142 )
143 lxd.delete_instance("pycloudlib-kvm")
144

145 lxd.launch(
146 name="pycloudlib-ephemeral",
147 image_id="ubuntu:%s" % RELEASE,
148 ephemeral=True,
149 )
150 lxd.delete_instance("pycloudlib-ephemeral")
151

152 lxd.launch(
153 name="pycloudlib-custom-hw",
154 image_id="images:ubuntu/xenial",
155 network="lxdbr0",
156 storage="default",
157 inst_type="t2.micro",
158 wait=False,
159 )
160 lxd.delete_instance("pycloudlib-custom-hw")
161

162 lxd.launch(
163 name="pycloudlib-privileged",
164 image_id=RELEASE,
165 config_dict={
166 "security.nesting": "true",
167 "security.privileged": "true",
168 },
169 )

(continues on next page)

5.12. LXD 33



pycloudlib Documentation

(continued from previous page)

170 lxd.delete_instance("pycloudlib-privileged")
171

172

173 def basic_lifecycle():
174 """Demonstrate basic set of lifecycle operations with LXD."""
175 with pycloudlib.LXDContainer("example-basic") as lxd:
176 with lxd.launch(image_id=RELEASE) as inst:
177 inst.wait()
178

179 name = "pycloudlib-daily"
180 with lxd.launch(name=name, image_id=RELEASE) as inst:
181 inst.wait()
182 inst.console_log()
183

184 result = inst.execute("uptime")
185 print(result)
186 print(result.return_code)
187 print(result.ok)
188 print(result.failed)
189 print(bool(result))
190

191 inst.shutdown()
192 inst.start()
193 inst.restart()
194

195 # Custom attributes
196 print(inst.ephemeral)
197 print(inst.state)
198

199 inst = lxd.get_instance(name)
200 inst.delete()
201

202

203 def launch_virtual_machine():
204 """Demonstrate launching virtual machine scenario."""
205 with pycloudlib.LXDVirtualMachine("example-vm") as lxd:
206 pub_key_path = "lxd-pubkey"
207 priv_key_path = "lxd-privkey"
208 pub_key, priv_key = lxd.create_key_pair()
209

210 with open(pub_key_path, "w", encoding="utf-8") as f:
211 f.write(pub_key)
212

213 with open(priv_key_path, "w", encoding="utf-8") as f:
214 f.write(priv_key)
215

216 lxd.use_key(
217 public_key_path=pub_key_path, private_key_path=priv_key_path
218 )
219

220 image_id = lxd.released_image(release=RELEASE)
221 image_serial = lxd.image_serial(image_id)
222 print("Image serial: {}".format(image_serial))
223 name = "pycloudlib-vm"
224 with lxd.launch(name=name, image_id=image_id) as inst:
225 inst.wait()
226 print("Is vm: {}".format(inst.is_vm))

(continues on next page)

34 Chapter 5. Contact



pycloudlib Documentation

(continued from previous page)

227 result = inst.execute("lsb_release -a")
228 print(result)
229 print(result.return_code)
230 print(result.ok)
231 print(result.failed)
232 print(bool(result))
233

234 inst_2 = lxd.get_instance(name)
235 print(inst_2.execute("lsb_release -a"))
236

237 inst.shutdown()
238 inst.start()
239 inst.restart()
240

241

242 def demo():
243 """Show examples of using the LXD library."""
244 basic_lifecycle()
245 launch_options()
246 launch_multiple()
247 modify_instance()
248 snapshot_instance()
249 image_snapshot_instance(ephemeral_instance=False)
250 launch_virtual_machine()
251

252

253 if __name__ == "__main__":
254 logging.basicConfig(level=logging.DEBUG)
255 demo()

5.13 OCI

1 #!/usr/bin/env python3
2 # This file is part of pycloudlib. See LICENSE file for license information.
3 """Basic examples of various lifecycle with an OCI instance."""
4

5 import logging
6 import sys
7 from base64 import b64encode
8

9 import pycloudlib
10

11 cloud_config = """#cloud-config
12 runcmd:
13 - echo 'hello' > /home/ubuntu/example.txt
14 """
15

16

17 def demo(availability_domain, compartment_id):
18 """Show example of using the OCI library.
19

20 Connects to OCI and launches released image. Then runs
21 through a number of examples.
22 """

(continues on next page)

5.13. OCI 35



pycloudlib Documentation

(continued from previous page)

23 with pycloudlib.OCI(
24 "oracle-test",
25 availability_domain=availability_domain,
26 compartment_id=compartment_id,
27 ) as client:
28 with client.launch(
29 image_id=client.released_image("focal"),
30 user_data=b64encode(cloud_config.encode()).decode(),
31 ) as instance:
32 instance.wait()
33 print(instance.instance_data)
34 print(instance.ip)
35 instance.execute("cloud-init status --wait --long")
36 print(instance.execute("cat /home/ubuntu/example.txt"))
37

38 snapshotted_image_id = client.snapshot(instance)
39

40 with client.launch(image_id=snapshotted_image_id) as new_instance:
41 new_instance.wait()
42 new_instance.execute("whoami")
43

44

45 if __name__ == "__main__":
46 logging.basicConfig(level=logging.DEBUG)
47 if len(sys.argv) != 3:
48 print("Usage: oci.py <availability_domain> <compartment_id>")
49 sys.exit(1)
50 passed_availability_domain = sys.argv[1]
51 passed_compartment_id = sys.argv[2]
52 demo(passed_availability_domain, passed_compartment_id)

5.14 Configuration

Configuration is achieved via a configuration file. At the root of the pycloudlib repo is a file named py-
cloudlib.toml.template. This file contains stubs for the credentials necessary to connect to any individual cloud. Fill in
the details appropriately and copy the file to either ~/.config/pycloudlib.toml or /etc/pycloudlib.toml.

Additionally, the configuration file path can be passed to the API directly or via the PYCLOUDLIB_CONFIG envi-
ronment variable. The order pycloudlib searches for a configuration file is:

• Passed via the API

• PYCLOUDLIB_CONFIG

• ~/.config/pycloudlib.toml

• /etc/pycloudlib.toml

5.14.1 pycloudlib.toml.template

############### pycloudlib.toml.template #####################################
# Copy this file to ~/.config/pycloudlib.toml or /etc/pycloudlib.toml and
# fill in the values appropriately. You can also set a PYCLOUDLIB_CONFIG
# environment variable to point to the path of the config file.

(continues on next page)

36 Chapter 5. Contact



pycloudlib Documentation

(continued from previous page)

#
# After you complete this file, DO NOT CHECK IT INTO VERSION CONTROL
# It you have a secret manager like lastpass, it should go there
#
# If a key is uncommented, it is required to launch an instance on that cloud.
# Commented keys aren't required, but allow further customization for
# settings in which the defaults don't work for you. If a key has a value,
# that represents the default for that cloud.
##############################################################################

[azure]
# Credentials can be found with `az ad sp create-for-rbac --sdk-auth`
client_id = ""
client_secret = ""
subscription_id = ""
tenant_id = ""
# region = "centralus"
# public_key_path = "~/.ssh/id_rsa.pub"
# private_key_path = "" # Defaults to 'public_key_path' without the '.pub'
# key_name = "" # Defaults to your username if not set

[ec2]
# Most values can be found in ~/.aws/credentials or ~/.aws/config
access_key_id = "" # in ~/.aws/credentials
secret_access_key = "" # in ~/.aws/credentials
region = "" # in ~/.aws/config
# public_key_path = "/root/id_rsa.pub"
# private_key_path = "" # Defaults to 'public_key_path' without the '.pub'
# key_name = "" # can be found with `aws ec2 describe-key-pairs`

[gce]
# For a user, credentials_path should be ~/.config/gcloud/application_default_
→˓credentials.json
# For a service, in the console, create a json key in the IAM service accounts page
→˓and download
credentials_path = "~/.config/gcloud/application_default_credentials.json"
project = "" # glcoud config get-value project
# region = "us-west2"
# zone = "a"
# service_account_email = ""
# public_key_path = "~/.ssh/id_rsa.pub"
# private_key_path = "" # Defaults to 'public_key_path' without the '.pub'
# key_name = "" # Defaults to your username if not set

[ibm]
# If vpc is given, then the vpc has to belong to the same resource_group specified
→˓here.
# resource_group = "Default" # Defaults to `Default`
# vpc = "vpc_name" # Defaults to `{region}-default-vpc`.
# api_key = "" # IBM Cloud API key
# region = "eu-de"
# zone = "eu-de-2"
# public_key_path = "/root/id_rsa.pub"
# private_key_path = "" # Defaults to 'public_key_path' without the '.pub'
# key_name = "" # Defaults to your username if not set

(continues on next page)

5.14. Configuration 37



pycloudlib Documentation

(continued from previous page)

[oci]
config_path = "~/.oci/config"
availability_domain = "" # Likely in ~/.oci/oci_cli_rc
compartment_id = "" # Likely in ~/.oci/oci_cli_rc
# public_key_path = "~/.ssh/id_rsa.pub"
# private_key_path = "" # Defaults to 'public_key_path' without the '.pub'
# key_name = "" # Defaults to your username if not set

[openstack]
# Openstack can be configured a number of different ways, so best to defer
# to clouds.yaml or OS_ env vars.
# See https://docs.openstack.org/openstacksdk/latest/user/config/configuration.html
network = "" # openstack network list
# public_key_path = "~/.ssh/id_rsa.pub"
# private_key_path = "" # Defaults to 'public_key_path' without the '.pub'
# key_name = "" # Defaults to your username if not set

[lxd]

[vmware]
# These are likely defined as environment variables if using govc. They correspond to:
# GOVC_URL
# GOVC_USERNAME
# GOVC_PASSWORD
# GOVC_DATACENTER
# GOVC_DATASTORE
# GOVC_FOLDER
# GOVC_INSECURE
#
# respectively.
server = ""
username = ""
password = ""
datacenter = ""
datastore = ""
folder = "" # The folder to place new VMs as well as to find TEMPLATE VMs
insecure_transport = false
# public_key_path = "~/.ssh/id_rsa.pub"
# private_key_path = "" # Defaults to 'public_key_path' without the '.pub'
# key_name = "" # Defaults to your username if not set

5.15 SSH Key Setup

Clouds have different expectations of whether a key should be pre-loaded before launching instances or whether a key
can be specified during launch. This page goes through a few different scenarios.

5.15.1 Default Behavior

The default behavior of pycloudlib is to use the user’s RSA key found in /home/$USER/.ssh/. On clouds where
the key is referenced by a name (e.g. AWS EC2), then the value of $USER is used:

| Item | Default Location | | ———– | —————————– | | Public Key | /home/$USER/.ssh/id_rsa.pub
| | Private Key | /home/$USER/.ssh/id_rsa | | Name | $USER |

38 Chapter 5. Contact



pycloudlib Documentation

If any of these values are not correct, then the user will need to specify the key to use or upload a new key. See the
following sections for more information.

5.15.2 Using the Configuration File

In pycloudlib.toml, any cloud can take the optional keys public_key_path, private_key_path, and
key_name. If specified, these values will be used for SSH.

5.15.3 Use an Uploaded Key

Ideally if the user’s SSH key as started above will not work, then the user will have already uploaded the key to be
used with the cloud.

To prevent needing to upload and delete a key over-and-over a user can specify a previously uploaded key by again
pointing at the public key and the name the cloud uses to reference the key:

cloud.use_key('/tmp/id_rsa.pub', '/tmp/private', 'powersj_tmp')
'using SSH key powersj_tmp'

| Item | Default Location | | ———– | ——————– | | Public Key | /tmp/id_rsa.pub | | Private Key | /tmp/
private | | Name | powersj_tmp |

5.15.4 Upload a New Key

This is not available on all clouds, only those that require a key to be uploaded.

On AWS EC2 for example, on-the-fly SSH key usage is not allowed as a key must have been previously uploaded to
the cloud. As such a user can upload a key by pointing at the public key and giving it a name. The following both
uploads and tells pycloudlib which key to use in one command:

cloud.upload_key('/tmp/id_rsa.pub', 'powersj_tmp')
'uploading SSH key powersj_tmp'
'using SSH key powersj_tmp'

Uploading a key with a name that already exists will fail. Hence having the user have the keys in place before running
and using use_key() is the preferred method.

5.15.5 Deleting an Uploaded Key

This is not available on all clouds, only those that require a key to be uploaded.

Finally, to delete an uploaded key:

cloud.delete_key('powersj_tmp')
'deleting SSH key powersj_tmp'

5.16 Images

By default, images used are based on Ubuntu’s daily cloud images.

pycloudlib uses simplestreams to determine the latest daily images using the appropriate images found at Ubuntu
Cloud Images site.

5.16. Images 39

https://launchpad.net/simplestreams
https://cloud-images.ubuntu.com/daily/
https://cloud-images.ubuntu.com/daily/


pycloudlib Documentation

5.16.1 Filter

The image search is filtered based on a variety of options, which vary from cloud to cloud. Here is an example for
Amazon’s EC2:

filters = [
'arch=%s' % arch,
'endpoint=%s' % 'https://ec2.%s.amazonaws.com' % self.region,
'region=%s' % self.region,
'release=%s' % release,
'root_store=%s' % root_store,
'virt=hvm',

]

This allows for the root store to be configurable by the user.

5.17 Resource Cleanup

By default, pycloudlib will not automatically cleanup created resources because there are use cases for inspecting
resources launched by pycloudlib after pycloudlib has exited.

5.17.1 Performing Cleanup

The easiest way to ensure cleanup happens is to use the cloud and instance context managers. For example,
using EC2:

from pycloudlib.ec2.cloud import EC2

with EC2(tag="example") as cloud:
with cloud.launch("your-ami") as instance:

instance.wait()
output = instance.execute("cat /etc/lsb-release").stdout

print(output)

When the context manager exits (even if due to an exception), all resources that were created during the lifetime of
the Cloud or Instance object will automatically be cleaned up. Any exceptions raised during the cleanup process
will be raised.

Alternatively, if you don’t want to use context managers, you can manually cleanup all resources using the .clean()
method on Cloud objects and the .delete() method on Instance objects. For example, using EC2:

from pycloudlib.ec2.cloud import EC2

cloud = EC2(tag="example")
instance = cloud.launch("your-ami")
instance.wait()
instance.execute("cat /etc/lsb-release").stdout

instance_cleanup_exceptions: List[Exception] = instance.delete()
cloud_cleanup_exceptions: List[Exception] = cloud.clean()

40 Chapter 5. Contact



pycloudlib Documentation

Things to note:

• Exceptions that occur during cleanup aren’t automatically raised and are instead returned. This is to is to prevent
a failure in one stage of cleanup from affecting another.

• Resources can still leak if an exception is raised between creating the object and cleaning it up. To ensure
resources are not leaked, the body of code between launch and cleanup must be wrapped in an exception handler.

Because of these reasons, the context manager approach should be preferred.

5.18 Contributing

This document describes how to contribute changes to pycloudlib.

5.18.1 Get the Source

The following demonstrates how to obtain the source from Launchpad and how to create a branch to hack on.

It is assumed you have a Launchpad account and refers to your launchpad user as LP_USER throughout.

git clone https://git.launchpad.net/pycloudlib
cd pycloudlib
git remote add LP_USER ssh://LP_USER@git.launchpad.net/~LP_USER/pycloudlib
git push LP_USER master
git checkout -b YOUR_BRANCH

5.18.2 Make Changes

Development Environment

The makefile can be used to create a Python virtual environment and do local testing:

# Creates a python virtual environment with all requirements
make venv
. venv/bin/activate

Documentation

The docs directory has its own makefile that can be used to install the dependencies required for document generation.

Documentation should be written in Markdown whenever possible.

Considerations

When making changes please keep the following in mind:

• Keep pull requests limited to a single issue

• Code must be formatted to Black standards

– Run tox -e format to reformat code accordingly

• Run tox to execute style and lint checks

5.18. Contributing 41

https://launchpad.net/
https://black.readthedocs.io/en/stable/index.html


pycloudlib Documentation

• When adding new clouds please add detailed documentation under the docs directory and code examples under
examples

5.18.3 Submit a Merge Request

To submit your merge request first push your branch:

git push -u LP_USER YOUR_BRANCH

Then navigate to your personal Launchpad code page:

https://code.launchpad.net/~LP_USER/pycloudlib

And do the following:

• Click on your branch and choose ‘Propose for merging’

• Target branch: set to ‘master’

• Enter a commit message formatted as follows:

topic: short description

Detailed paragraph with change information goes here. Describe why the
changes are getting made, not what as that is obvious.

Fixes LP: #1234567

The submitted branch will get auto-reviewed by a bot and then a developer in the pycloudlib-devs group will review
of your submitted merge.

5.18.4 Do a Review

Pull the code into a local branch:

git checkout -b <branch-name> <LP_USER>
git pull https://git.launchpad.net/<LP_USER>/pycodestyle.git merge_request

Merge, re-test, and push:

git checkout master
git merge <branch-name>
tox
git push origin master

5.19 Maintainer Notes

5.19.1 Release Checklist

Run tox

tox

42 Chapter 5. Contact

https://launchpad.net/~pycloudlib-devs


pycloudlib Documentation

Update VERSION file with new release number

Use Semantic Versioning:

• major release is for breaking changes

• minor release for new features/functionality

• patch release for bug fixes

Some example scenarios are below

1.1.1 -> 1.1.2 for a bug fix
1.1.1 -> 1.2.0 for a new feature
1.1.1 -> 2.1.0 for a breaking change

Push to Github

git commit -am "Commit message"
git push

Submit Pull Request on Github

Use the web UI or one of the supported CLI tools

5.20 Design

The following outlines some key points from the design of the library:

5.20.1 Images

Instances are expected to use the latest daily image, unless another image is specifically requested.

cloud-init

The images are expected to have cloud-init in them to properly start. When an instance is started, or during launch,
the instance is checked for the boot complete file that cloud-init produces.

5.20.2 Instances

Instances shall use consistent operation schema across the clouds. For example:

• launch

• start

• shutdown

• restart

In addition interactions with the instance are covered by a standard set of commands:

• execute

5.20. Design 43

https://semver.org/


pycloudlib Documentation

• pull_file

• push_file

• console_log

5.20.3 Exceptions

The custom pycloudlib exceptions are located in pycloudlib.errors. Specific clouds can implement custom
exceptions, refer to pycloudlib.<cloud>.errors.

Exceptions from underlying libraries will be wrapped in a pycloudlib.errors.CloudError, some of them
will be leaked directly through for the end-user.

5.20.4 Logging

Logging is set up using the standard logging module. It is up to the user to set up their logging configuration and set
the appropriate level.

Logging for paramiko, used for SSH communication, is restricted to warning level and higher, otherwise the logging
is far too verbose.

5.20.5 Python Support

pycloudlib currently supports Python 3.6 and above.

pycloudlib minimum supported Python version will adhere to the Python version of the oldest Ubuntu Version with
Standard Support. After that Ubuntu Version reaches the End of Standard Support, we will stop testing upstream
changes against the unsupported version of Python and may introduce breaking changes. This policy may change as
needed.

The following table lists the Python version supported in each Ubuntu LTS release with Standard Support:

Ubuntu Version Python version
18.04 LTS 3.6
20.04 LTS 3.8
22.04 LTS 3.10

5.21 API

5.21.1 pycloudlib

pycloudlib package

Subpackages

pycloudlib.azure package

Subpackages

44 Chapter 5. Contact

https://wiki.ubuntu.com/Releases
https://wiki.ubuntu.com/Releases


pycloudlib Documentation

pycloudlib.azure.tests package

Submodules

pycloudlib.azure.tests.test_cloud module

pycloudlib.azure.tests.test_security_types module

Submodules

pycloudlib.azure.cloud module

pycloudlib.azure.instance module

pycloudlib.azure.security_types module

pycloudlib.azure.util module

pycloudlib.ec2 package

Submodules

pycloudlib.ec2.cloud module

pycloudlib.ec2.instance module

pycloudlib.ec2.util module

pycloudlib.ec2.vpc module

pycloudlib.gce package

Subpackages

pycloudlib.gce.tests package

Submodules

pycloudlib.gce.tests.test_cloud module

Submodules

pycloudlib.gce.cloud module

pycloudlib.gce.errors module

5.21. API 45



pycloudlib Documentation

pycloudlib.gce.instance module

pycloudlib.gce.util module

pycloudlib.ibm package

Subpackages

pycloudlib.ibm.tests package

Submodules

pycloudlib.ibm.tests.test_util module

Submodules

pycloudlib.ibm.cloud module

pycloudlib.ibm.errors module

pycloudlib.ibm.instance module

pycloudlib.lxd package

Subpackages

pycloudlib.lxd.tests package

Submodules

pycloudlib.lxd.tests.test_cloud module

pycloudlib.lxd.tests.test_defaults module

pycloudlib.lxd.tests.test_images module

pycloudlib.lxd.tests.test_instance module

Submodules

pycloudlib.lxd.cloud module

pycloudlib.lxd.defaults module

pycloudlib.lxd.instance module

46 Chapter 5. Contact



pycloudlib Documentation

pycloudlib.oci package

Submodules

pycloudlib.oci.cloud module

pycloudlib.oci.instance module

pycloudlib.oci.utils module

pycloudlib.openstack package

Submodules

pycloudlib.openstack.cloud module

pycloudlib.openstack.errors module

pycloudlib.openstack.instance module

pycloudlib.vmware package

Submodules

pycloudlib.vmware.cloud module

pycloudlib.vmware.instance module

Submodules

pycloudlib.cloud module

pycloudlib.config module

pycloudlib.constants module

pycloudlib.errors module

pycloudlib.instance module

pycloudlib.key module

pycloudlib.result module

pycloudlib.util module

5.21. API 47


	Documentation
	Install
	Usage
	Bugs
	Contact
	Azure
	EC2
	GCE
	IBM
	LXD
	OCI
	Openstack
	VMWare
	EC2
	GCE
	IBM
	LXD
	OCI
	Configuration
	SSH Key Setup
	Images
	Resource Cleanup
	Contributing
	Maintainer Notes
	Design
	API


